Boundary element monotone iteration scheme for semilinear elliptic partial differential equations, Part II: Quasimonotone iteration for coupled systems
نویسندگان
چکیده
Numerical solutions of 2× 2 semilinear systems of elliptic boundary value problems, whose nonlinearities are of quasimonotone nondecreasing, quasimonotone nonincreasing, or mixed quasimonotone types, are computed. At each step of the (quasi) monotone iteration, the solution is represented by a simple-layer potential plus a domain integral; the simple-layer density is then discretized by boundary elements. Because of the various combinations of Dirichlet, Neumann and Robin boundary conditions, there is an associated 2×2 matrix problem, the norm of which must be estimated. From the analysis of such 2×2 matrices, we formulate conditions which guarantee the monotone iteration a strict contraction staying within the close range of a given pair of subsolution and supersolution. Thereafter, boundary element error analysis can be carried out in a similar way as for the discretized problem. A concrete example of a monotone dissipative system on a 2D annular domain is also computed and illustrated.
منابع مشابه
Boundary Element Monotone Iteration Scheme for Semilinear Elliptic Partial Differential Equations, Part Ii: Quasimonotone Iteration for Coupled 2× 2 Systems
Numerical solutions of 2× 2 semilinear systems of elliptic boundary value problems, whose nonlinearities are of quasimonotone nondecreasing, quasimonotone nonincreasing, or mixed quasimonotone types, are computed. At each step of the (quasi) monotone iteration, the solution is represented by a simple-layer potential plus a domain integral; the simple-layer density is then discretized by boundar...
متن کاملBoundary element monotone iteration scheme for semilinear elliptic partial differential equations
The monotone iteration scheme is a constructive method for solving a wide class of semilinear elliptic boundary value problems. With the availability of a supersolution and a subsolution, the iterates converge monotonically to one or two solutions of the nonlinear PDE. However, the rates of such monotone convergence cannot be determined in general. In addition, when the monotone iteration schem...
متن کاملPeriodic Boundary Value Problems for Semilinear Fractional Differential Equations
We study the periodic boundary value problem for semilinear fractional differential equations in an ordered Banach space. The method of upper and lower solutions is then extended. The results on the existence of minimal and maximal mild solutions are obtained by using the characteristics of positive operators semigroup and the monotone iterative scheme. The results are illustrated by means of a...
متن کاملAlgorithms and Visualization for solutions of nonlinear Elliptic equations
In this paper, we compute and visualize solutions of several major types of semilinear elliptic boundary value problems with a homogeneous Dirichlet boundary condition in 2D. We present the mountain–pass algorithm (MPA), the scaling iterative algorithm (SIA), the monotone iteration and the direct iteration algorithms (MIA and DIA). Semilinear elliptic equations are well known to be rich in thei...
متن کاملExistence and Uniqueness of Solutions on Bounded Domains to a Fitzhugh-nagumo Type Elliptic System
In this paper we prove the existence and uniqueness of the boundary layer solution to a semilinear eigenvalue problem consisting of a coupled system of two elliptic partial differential equations. Although the system is not quasimonotone, there exists a transformation to a quasimonotone system. For the transformed system we may and will use maximum (sweeping) principle arguments to derive point...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 69 شماره
صفحات -
تاریخ انتشار 2000